损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
损失函数分为经验风险损失函数和结构风险损失函数
。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。一般用于防止过拟合,模型越复杂,其正则项的值就越大,相应的结构化风险损失函数的值就越大,相应的损失就越大。
常见的损失函数以及其优缺点如下:
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
损失函数分为经验风险损失函数和结构风险损失函数
。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。一般用于防止过拟合,模型越复杂,其正则项的值就越大,相应的结构化风险损失函数的值就越大,相应的损失就越大。
常见的损失函数以及其优缺点如下:
我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的
特征向量,伸缩的比例就是特征值。
在sklearn
中,决策树在以下位置:
sklearn.tree
主要包含这么几种树:
包 | 作用 |
---|---|
tree.DecisionTreeClassifier |
分类树 |
tree.DecisionTreeRegressor |
回归树 |
tree.export_graphviz |
将生成的决策树导出为 DOT 格式,画图专用 |
tree.ExtraTreeClassifier |
高随机版本的分类树 |
tree.ExtraTreeRegressor |
高随机版本的回归树 |
本文主要讲解误差逆传播算法的实现。
在将单层感知器转换为多层神经网络之后,其损失函数可以使用下面的军方误差的形式去表示,具体如下:
$$
E_k = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j^k - y_j^k)^2
\tag{1}
$$
专用于分词的 Python
库,GitHub:https://github.com/fxsjy/jieba,分词效果较好。
本文主要记录我在学习机器学习过程中对梯度概念复习的笔记,主要参考《高等数学》《简明微积分》以及维基百科上的资料为主,文章小节安排如下:
1)导数 2)导数和偏导数 3)导数与方向导数 4)导数与梯度 5)梯度下降法
标量、向量、矩阵、张量可以分别理解为0维、1维、2维和多维数组,对应着0维、1维、2维和多维空间(2019年8月14日)。
标量、向量、矩阵、张量可以分别理解为0阶、1阶、2阶和多阶数组,对应着0维、1维、2维和多维空间,每一个单位量的元素个数可以看做是维数,如: