损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
损失函数分为经验风险损失函数和结构风险损失函数
。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。一般用于防止过拟合,模型越复杂,其正则项的值就越大,相应的结构化风险损失函数的值就越大,相应的损失就越大。
常见的损失函数以及其优缺点如下:
损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。
损失函数分为经验风险损失函数和结构风险损失函数
。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。一般用于防止过拟合,模型越复杂,其正则项的值就越大,相应的结构化风险损失函数的值就越大,相应的损失就越大。
常见的损失函数以及其优缺点如下:
本文主要讲解误差逆传播算法的实现。
在将单层感知器转换为多层神经网络之后,其损失函数可以使用下面的军方误差的形式去表示,具体如下:
$$
E_k = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j^k - y_j^k)^2
\tag{1}
$$