SVM对偶形式推导

SVM对偶形式推导

拉格朗日函数的介绍

优化问题的一般形式

形式一:
$$
\begin{align}
\min_x \quad & f_0(x) \\
s.t.\quad & f_i(x) \le 0 , \quad i = 1,\dots,m \\
& h_i(x) = 0, \quad i = 1,\dots,p
\end{align}
\tag{1}
$$

阅读更多
SVM原始形式推导

SVM原始形式推导

欧式空间平面的常见性质

证明$\omega$是平面的法向量

$$
\left \lbrace
\begin{matrix}
\omega^T\mathcal{x_1} + b = 0 \\
\omega^T \mathcal{x_2} + b = 0
\end{matrix}
\right .
\to \omega^T(\mathcal{x_1} - \mathcal{x_2}) = 0 \to \omega^T \mathcal{x} = 0
\tag{1}
$$

阅读更多
最小二乘公式

最小二乘公式

数据集:
$$
D = \lbrace (x_1, y_1),(x_2, y_2),\dots,(x_n, y_n) \rbrace \\
x \in \mathbb{R}^p; y \in \mathbb{R}
\tag{1}
$$
其中,每一个$x$都是一个$p$维的列向量,$y$ 是一个数。

阅读更多