拉格朗日函数的介绍
优化问题的一般形式
形式一:
$$
\begin{align}
\min_x \quad & f_0(x) \\
s.t.\quad & f_i(x) \le 0 , \quad i = 1,\dots,m \\
& h_i(x) = 0, \quad i = 1,\dots,p
\end{align}
\tag{1}
$$
形式一:
$$
\begin{align}
\min_x \quad & f_0(x) \\
s.t.\quad & f_i(x) \le 0 , \quad i = 1,\dots,m \\
& h_i(x) = 0, \quad i = 1,\dots,p
\end{align}
\tag{1}
$$
$$
\left \lbrace
\begin{matrix}
\omega^T\mathcal{x_1} + b = 0 \\
\omega^T \mathcal{x_2} + b = 0
\end{matrix}
\right .
\to \omega^T(\mathcal{x_1} - \mathcal{x_2}) = 0 \to \omega^T \mathcal{x} = 0
\tag{1}
$$