常见的卷积核
常见的卷积核
低通滤波器
$$
\left [
\begin{matrix}
1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1
\end{matrix}
\right ] * \frac{1}{9}
\tag{1}
$$
$$
\left [
\begin{matrix}
1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1
\end{matrix}
\right ] * \frac{1}{10}
\tag{2}
$$
$$
\left [
\begin{matrix}
1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1
\end{matrix}
\right ] * \frac{1}{16}
\tag{3}
$$
高通滤波器
$$
\left [
\begin{matrix}
0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0
\end{matrix}
\right ]
\tag{4}
$$
$$
\left [
\begin{matrix}
-1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1
\end{matrix}
\right ]
\tag{5}
$$
$$
\left [
\begin{matrix}
1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1
\end{matrix}
\right ]
\tag{6}
$$
平移和查分边缘检测
$$
\left [
\begin{matrix}
0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0
\end{matrix}
\right ]
\tag{7}
$$
$$
\left [
\begin{matrix}
0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0
\end{matrix}
\right ]
\tag{8}
$$
$$
\left [
\begin{matrix}
-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0
\end{matrix}
\right ]
\tag{9}
$$
匹配滤波边缘检测
$$
\left [
\begin{matrix}
-1 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1
\end{matrix}
\right ]
\tag{10}
$$
$$
\left [
\begin{matrix}
-1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1
\end{matrix}
\right ]
\tag{11}
$$
边缘检测
$$
\left [
\begin{matrix}
-1 & 0 & -1 \\ 0 & 4 & 0 \\ -1 & 0 & -1
\end{matrix}
\right ]
\tag{12}
$$
$$
\left [
\begin{matrix}
-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1
\end{matrix}
\right ]
\tag{13}
$$
$$
\left [
\begin{matrix}
-1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1
\end{matrix}
\right ]
\tag{14}
$$
$$
\left [
\begin{matrix}
1 & -2 & 1 \\ -2 & 1 & -2 \\ 1 & -2 & 1
\end{matrix}
\right ]
\tag{15}
$$
梯度方向边缘检测
$$
\left [
\begin{matrix}
1 & 1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & -1
\end{matrix}
\right ]
\tag{16}
$$
$$
\left [
\begin{matrix}
1 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & -1 & 1
\end{matrix}
\right ]
\tag{17}
$$
$$
\left [
\begin{matrix}
-1 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & 1 & 1
\end{matrix}
\right ]
\tag{18}
$$
$$
\left [
\begin{matrix}
-1 & -1 & 1 \\ -1 & -2 & 1 \\ 1 & 1 & 1
\end{matrix}
\right ]
\tag{19}
$$
$$
\left [
\begin{matrix}
-1 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & 1 & 1
\end{matrix}
\right ]
\tag{20}
$$
$$
\left [
\begin{matrix}
1 & -1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & 1
\end{matrix}
\right ]
\tag{21}
$$
$$
\left [
\begin{matrix}
1 & 1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -1
\end{matrix}
\right ]
\tag{22}
$$
$$
\left [
\begin{matrix}
1 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -1
\end{matrix}
\right ]
\tag{23}
$$
上图使用的代码
1 | import numpy as np |