熵
熵(Entropy),在本文中是指信息熵(Information
Entropy),简单的来说,就是指一件事情的不确定性的度量,其单位为(Bit)。相对的,信息的单位也是Bit,刚好是信息熵的反义词,是指一件事情的确定性。
首先,引入熵的计算公式:
$$
Ent(D) = - \sum_k^{| \mathcal{Y} |} P_k log_2{P_k}
\tag{1}
$$
熵(Entropy),在本文中是指信息熵(Information
Entropy),简单的来说,就是指一件事情的不确定性的度量,其单位为(Bit)。相对的,信息的单位也是Bit,刚好是信息熵的反义词,是指一件事情的确定性。
首先,引入熵的计算公式:
$$
Ent(D) = - \sum_k^{| \mathcal{Y} |} P_k log_2{P_k}
\tag{1}
$$
自变量↓\因变量→ | 标量$y$ | 向量$\mathbf{y}$ | 矩阵$\mathbf{Y}$ |
---|---|---|---|
标量$x$ | $\frac{\partial y}{\partial x}$ | $\frac{\partial \mathbf{y}}{\partial x}$ | $\frac{\partial \mathbf{Y}}{\partial x}$ |
向量$\mathbf{x}$ | $\frac{\partial y}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$ |
矩阵$\mathbf{X}$ | $\frac{\partial y}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$ |
分子布局($numerator\ layout$)和分母布局($denominator\ layout$ )。