React的基本生命周期
神经网络中,梯度下降算法的具体实现原理

神经网络中,梯度下降算法的具体实现原理

本文主要讲解误差逆传播算法的实现。

BP网络

在将单层感知器转换为多层神经网络之后,其损失函数可以使用下面的军方误差的形式去表示,具体如下:

$$
E_k = \frac{1}{2} \sum_{j=1}^{l} (\hat{y}_j^k - y_j^k)^2
\tag{1}
$$

阅读更多
朴素贝叶斯分类器

朴素贝叶斯分类器

贝叶斯判定准则

贝叶斯判定该准则被描述为:为了最小化总体风险,只需要在每个样本上选择那个能使条件风险$R(c|x)$最小的类别标记,即:

$$
h^\star (x) = \arg\min_{c \in \mathcal{Y}} R(c | x)
\tag{1}
$$

此时,$h^\star$称作贝叶斯最优分类器。

注:此时的$h^\star$并不是一个可以计算的值,只是一个贝叶斯最优分类器的理论指导。

阅读更多
SVM对偶形式推导

SVM对偶形式推导

拉格朗日函数的介绍

优化问题的一般形式

形式一:
$$
\begin{align}
\min_x \quad & f_0(x) \\
s.t.\quad & f_i(x) \le 0 , \quad i = 1,\dots,m \\
& h_i(x) = 0, \quad i = 1,\dots,p
\end{align}
\tag{1}
$$

阅读更多
SVM原始形式推导

SVM原始形式推导

欧式空间平面的常见性质

证明$\omega$是平面的法向量

$$
\left \lbrace
\begin{matrix}
\omega^T\mathcal{x_1} + b = 0 \\
\omega^T \mathcal{x_2} + b = 0
\end{matrix}
\right .
\to \omega^T(\mathcal{x_1} - \mathcal{x_2}) = 0 \to \omega^T \mathcal{x} = 0
\tag{1}
$$

阅读更多