矩阵求导
矩阵求导的定义
自变量↓\因变量→ | 标量$y$ | 向量$\mathbf{y}$ | 矩阵$\mathbf{Y}$ |
---|---|---|---|
标量$x$ | $\frac{\partial y}{\partial x}$ | $\frac{\partial \mathbf{y}}{\partial x}$ | $\frac{\partial \mathbf{Y}}{\partial x}$ |
向量$\mathbf{x}$ | $\frac{\partial y}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$ |
矩阵$\mathbf{X}$ | $\frac{\partial y}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$ | $\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$ |
矩阵求导的两种布局:
分子布局($numerator\ layout$)和分母布局($denominator\ layout$ )。